翻訳と辞書
Words near each other
・ Graecoanatolica anatolica
・ Graecoanatolica brevis
・ Graecoanatolica conica
・ Graecoanatolica dinarica
・ Graecoanatolica kocapinarica
・ Graecoanatolica lacustristurca
・ Graecoanatolica macedonica
・ Graecoanatolica pamphylica
・ Graecophalangium
・ Graecopithecus
・ Graecostasis
・ Graecus
・ GRAEF
・ Graef Crystal
・ Graefenburg, Pennsylvania
Graeffe's method
・ Graefia
・ Graeham Goble
・ Graelent
・ Graells
・ Graells's tamarin
・ Graellsia
・ Graellsia (plant)
・ Graellsia isabellae
・ Graem Whyte
・ Graeme (surname)
・ Graeme Aldridge
・ Graeme Allan
・ Graeme Allwright
・ Graeme Anderson


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Graeffe's method : ウィキペディア英語版
Graeffe's method
In mathematics, Graeffe's method or Dandelin–Graeffe method is an algorithm for finding all of the roots of a polynomial. It was developed independently by Germinal Pierre Dandelin in 1826 and Karl Heinrich Gräffe in 1837. Lobachevsky in 1834 also discovered the principal idea of the method.〔Alston Scott Householder: ''Dandelin, Lobačevskiǐ, or Graeffe?'', Amer. Math. Monthly, 66 (1959), pp. 464–466 ((on JSTOR) )〕 The method separates the roots of a polynomial by squaring them repeatedly. This squaring of the roots is done implicitly, that is, only working on the coefficients of the polynomial. Finally, Viète's formulas are used in order to approximate the roots.
==Dandelin–Graeffe iteration==
Let be a polynomial of degree
:p(x) = (x-x_1)\cdots(x-x_n).
Then
:p(-x) = (-1)^n (x+x_1)\cdots(x+x_n).
Let be the polynomial which has the squares x_1^2, \cdots, x_n^2 as its roots,
:q(x)= \left (x-x_1^2 \right )\cdots \left (x-x_n^2 \right ).
Then we can write:
:\begin
q(x^2) & = \left (x^2-x_1^2 \right )\cdots \left (x^2-x_n^2 \right ) \\
& = (x-x_1)(x+x_1) \cdots (x-x_n) (x+x_n) \\
& = \left \ \times \left \ \\
& = p(x) \times \left \ \\
& = p(x) \times \left \ \\
& = (-1)^n p(x) p(-x)
\end
can now be computed by algebraic operations on the coefficients of the polynomial alone. Let:
:\begin
p(x) &= x^n+a_1x^+\cdots+a_x+a_n \\
q(x) &= x^n+b_1x^+\cdots+b_x+b_n
\end
then the coefficients are related by
:b_k=(-1)^k a_k^2 + 2\sum_^(-1)^j\,a_ja_, \qquad a_0=b_0=1.
Graeffe observed that if one separates into its odd and even parts:
:p(x)=p_e \left (x^2 \right )+x p_o\left (x^2 \right ),
then one obtains a simplified algebraic expression for :
:q(x)=(-1)^n \left (p_e(x)^2-x p_o(x)^2 \right ).
This expression involves the squaring of two polynomials of only half the degree, and is therefore used in most implementations of the method.
Iterating this procedure several times separates the roots with respect to their magnitudes. Repeating ''k'' times gives a polynomial of degree :
:q^k(y) = y^n + _1\,y^ + \cdots + _\,y + _n \,
with roots
:y_1=x_1^,\,y_2=x_2^,\,\dots,\,y_n=x_n^.
If the magnitudes of the roots of the original polynomial were separated by some factor \rho>1, that is, |x_k|\ge\rho |x_|, then the roots of the ''k''-th iterate are separated by a fast growing factor
:\rho^\ge 1+2^k(\rho-1).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Graeffe's method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.